Microwave Photonics|25 Article(s)
Optical pulse repetition rate division using an optoelectronic oscillator
Ping Li, Kunlin Shao, Yamei Zhang, and Shilong Pan
An approach for frequency division of an optical pulse train (OPT) based on an optoelectronic oscillator (OEO) is proposed and experimentally demonstrated. When the OPT is injected into the OEO, a microwave signal with a frequency equaling fractional multiples of the repetition rate of the OPT is generated. This signal is then fed back to the OEO, maintaining its oscillation, while simultaneously serving as the control signal of a Mach–Zehnder modulator (MZM) in the OEO. The MZM acts as an optical switch, permitting specific pulses to pass through while blocking others. As a result, the repetition rate of the OPT is manipulated. A proof-of-concept experiment is carried out. Frequency division factors of 2 and 3 are successfully achieved. The phase noises of the OPT before and after the frequency division are investigated. Compared to previously reported systems, no external microwave source and sophisticated synchronization structure are needed.
Chinese Optics Letters
  • Publication Date: Apr. 25, 2024
  • Vol. 22, Issue 4, 043902 (2024)
Demonstration of radar-aided flexible communication in a photonics-based W-band distributed integrated sensing and communication system for 6G
Junlian Jia, Boyu Dong, Li Tao, Jianyang Shi, Nan Chi, and Junwen Zhang
Chinese Optics Letters
  • Publication Date: Apr. 17, 2024
  • Vol. 22, Issue 4, 043901 (2024)
Highly efficient conversion from classical guided waves to topological chiral edge states|Editors' Pick
Jianfei Han, Feng Liang, Yulin Zhao, Xiao Ding, Xiangru Wang, Deshuang Zhao, and Bing-Zhong Wang
Electromagnetic topological chiral edge states mimicking the quantum Hall effect have attracted a great deal of attention due to their unique features of free backscattering and immunity against sharp bends and defects. However, the matching techniques between classical waveguides and the topological one-way waveguide deserve more attention for real-world applications. In this paper, a highly efficient conversion structure between a classical rectangular waveguide and a topological one-way waveguide is proposed and demonstrated at the microwave frequency, which efficiently converts classical guided waves to topological one-way edge states. A tapered transition is designed to match both the momentum and impedance of the classical guided waves and the topological one-way edge states. With the conversion structure, the waves generated by a point excitation source can be coupled to the topological one-way waveguide with very high coupling efficiency, which can ensure high transmission of the whole system (i.e., from the source and the receiver). Simulation and measurement results demonstrate the proposed method. This investigation is beneficial to the applications of topological one-way waveguides and opens up a new avenue for advanced topological and classical integrated functional devices and systems.
Chinese Optics Letters
  • Publication Date: Feb. 27, 2024
  • Vol. 22, Issue 2, 023902 (2024)
Programmable photonic RF filters based on an integrated Fabry–Pérot laser with a saturable absorber
Zhenzhen Xu, Yitong Liu, Jiahui Liu, Ling Wang, Wentao Sun, Zhenxing Sun, and Xiangfei Chen
We propose and experimentally demonstrate the programmable photonic radio frequency (RF) filters based on an integrated Fabry–Pérot laser with a saturable absorber (FP-SA). Owing to the high output power and the relative flatness spectrum of the FP-SA laser, only a waveshaper and an erbium-doped fiber amplifier (EDFA) were needed, which can greatly reduce the complexity of the system. The sinc filter employed 87 taps, representing a record-high tap number and resulting in a 3-dB bandwidth of 0.27 GHz and a quality factor of 148. Furthermore, Gaussian apodization enabled the out-of-band rejection of the filter to reach 34 dB and the center frequency to be finely tuned over a wide range, spanning from 4 to 14 GHz. These results indicate that the proposed scheme could provide a promising guideline for the photonic RF filters that demand both high reconfigurability and greatly reduced size and complexity.
Chinese Optics Letters
  • Publication Date: Feb. 22, 2024
  • Vol. 22, Issue 2, 023901 (2024)
Long-term ultrastable frequency dissemination via a 50-km spooled fiber link using a two-section DFB laser
Zhiqian Yin, Chuanbo Zhang, Shijian Guan, Xin Zhou, Yaguang Wang, Leilei Wang, Manhang Zheng, Yitong Liu, Yunshan Zhang, Xingbang Zhu, Tao Fang, and Xiangfei Chen
The stable long-distance transmission of radio-frequency (RF) signals holds significant importance from various aspects, including the comparison of optical frequency standards, remote monitoring and control, scientific research and experiments, and RF spectrum management. We demonstrate a scheme where an ultrastable frequency signal was transmitted over a 50 km coiled fiber. The optical RF signal is generated using a two-section distributed feedback (DFB) laser for direct modulation based on the reconstruction equivalent chirp (REC) technique. The 3-dB modulation bandwidth of the two-section DFB laser is 18 GHz and the residual phase noise of -122.87 dBc/Hz is achieved at 10-Hz offset frequency. We report a short-term stability of 1.62×10-14 at an average time of 1 s and a long-term stability of 6.55×10-18 at the measurement time of 62,000 s when applying current to the front section of the DFB laser. By applying power to both sections, the stability of the system improves to 4.42×10-18 within a testing period of 56,737 s. Despite applying temperature variations to the transmission link, long-term stability of 8.63×10-18 at 23.9 h can still be achieved.
Chinese Optics Letters
  • Publication Date: Jan. 18, 2024
  • Vol. 22, Issue 1, 013903 (2024)
Sub-Nyquist radar receiver based on photonics-assisted compressed sensing and cascaded dictionaries
Shiyang Liu, and Yang Chen
Chinese Optics Letters
  • Publication Date: Dec. 29, 2023
  • Vol. 22, Issue 1, 013902 (2024)
Time-resolution enhanced multi-path OTD measurement using an adaptive filter based incoherent OFDR
Lihan Wang, Lingyun Ren, Xiangchuan Wang, and Shilong Pan
High accuracy and time resolution optical transfer delay (OTD) measurement is highly desired in many multi-path applications, such as optical true-time-delay-based array systems and distributed optical sensors. However, the time resolution is usually limited by the frequency range of the probe signal in frequency-multiplexed OTD measurement techniques. Here, we proposed a time-resolution enhanced OTD measurement method based on incoherent optical frequency domain reflectometry (I-OFDR), where an adaptive filter is designed to suppress the spectral leakage from other paths to break the resolution limitation. A weighted least square (WLS) cost function is first established, and then an iteration approach is used to minimize the cost function. Finally, the appropriate filter parameter is obtained according to the convergence results. In a proof-of-concept experiment, the time-domain response of two optical links with a length difference of 900 ps is successfully estimated by applying a probe signal with a bandwidth of 400 MHz. The time resolution is improved by 2.78 times compared to the theoretical resolution limit of the inverse discrete Fourier transform (iDFT) algorithm. In addition, the OTD measurement error is below ±0.8 ps. The proposed algorithm provides a novel way to improve the measurement resolution without applying a probe signal with a large bandwidth, avoiding measurement errors induced by the dispersion effect.
Chinese Optics Letters
  • Publication Date: Jan. 08, 2024
  • Vol. 22, Issue 1, 013901 (2024)
Photonics 60 GBaud PDM-16QAM fiber-wireless 2 × 2 MIMO delivery at THz-band
Weiping Li, Jianjun Yu, Bowen Zhu, Jiao Zhang, Min Zhu, Chen Wang, Wen Zhou, Tangyao Xie, Jianguo Yu, and Feng Zhao
The terahertz photonics technique has bright application prospects in future sixth-generation (6G) broadband communication. In this study, we have experimentally demonstrated a photonics-assisted record-breaking net bit rate of 417 Gbit/s per wavelength signals delivery in a fiber-wireless converged communication system supported by advanced digital-signal-processing (DSP) algorithms and a polarization multiplexing-based multiple-input multiple-output (MIMO) scheme. In the experiment, up to 60 GBaud (480 Gbit/s) polarization-division-multiplexing 16-ary quadrature-amplitude-modulation (PDM-16QAM) signals are transmitted over 20 km fibers and 3 m wireless 2×2 MIMO links at 318 GHz with the bit error rate (BER) under 1.56×10-2. It is the first demonstration to our knowledge of signals delivery exceeding 400 Gbit/s per wavelength in a photonics-assisted fiber-wireless converged 2×2 MIMO communication system.
Chinese Optics Letters
  • Publication Date: Jul. 20, 2023
  • Vol. 21, Issue 7, 073901 (2023)
Linearized microwave downconversion link based on fast and intelligent impairment equalization for noncooperative systems
Zhiyu Chen, Xin Zhong, Lin Jiang, Jiaxin Xu, Jingxian Liu, Yan Pan, and Tao Zhou
We experimentally demonstrated the use of intelligent impairment equalization (IIE) for microwave downconversion link linearization in noncooperative systems. Such an equalizer is realized based on an artificial neural network (ANN). Once the training process is completed, the inverse link transfer function can be determined. With the inverse transformation for the detected signal after transmission, the third-order intermodulation distortion components are suppressed significantly without requiring any prior information from an input RF signal. Furthermore, fast training speed is achieved, since the configuration of ANN-based equalizer is simple. Experimental results show that the spurious-free dynamic range of the proposed link is improved to 106.5 dB · Hz2/3, which is 11.3 dB higher than that of a link without IIE. Meanwhile, the training epochs reduce to only five, which has the potential to meet the practical engineering requirement.
Chinese Optics Letters
  • Publication Date: Nov. 15, 2022
  • Vol. 21, Issue 2, 023902 (2023)
Single-lane 200 Gbit/s photonic wireless transmission of multicarrier 64-QAM signals at 300 GHz over 30 m
Hongqi Zhang, Lu Zhang, Zuomin Yang, Hang Yang, Zhidong Lü, Xiaodan Pang, Oskars Ozolins, and Xianbin Yu
Recently, wireless communication capacity has been witnessing unprecedented growth. Benefits from the optoelectronic components with large bandwidth, photonics-assisted terahertz (THz) communication links have been extensively developed to accommodate the upcoming wireless transmission with a high data rate. However, limited by the available signal-to-noise ratio and THz component bandwidth, single-lane transmission of beyond 100 Gbit/s data rate using a single pair of THz transceivers is still very challenging. In this study, a multicarrier THz photonic wireless communication link in the 300 GHz band is proposed and experimentally demonstrated. Enabled by subcarrier multiplexing, spectrally efficient modulation format, well-tailored digital signal processing routine, and broadband THz transceivers, a line rate of 72 Gbit/s over a wireless distance of 30 m is successfully demonstrated, resulting in a total net transmission capacity of up to 202.5 Gbit/s. The single-lane transmission of beyond 200 Gbit/s overall data rate with a single pair of transceivers at 300 GHz is considered a significant step toward a viable photonics-assisted solution for the next-generation information and communication technology (ICT) infrastructure.
Chinese Optics Letters
  • Publication Date: Nov. 11, 2022
  • Vol. 21, Issue 2, 023901 (2023)
Topics